Parenting Style and the Development of Human Capital in Children

Marco Cosconati

Bank of Italy & IZA
Introduction

Motivation

- The impact of parental home inputs on children’s outcomes has been widely studied by economists.
The impact of parental home inputs on children’s outcomes has been widely studied by economists.

The effectiveness of alternative parenting strategies in producing desirable child outcomes has been investigated by researchers in child development and sociology.
The impact of parental home inputs on children’s outcomes has been widely studied by economists.

The effectiveness of alternative parenting strategies in producing desirable child outcomes has been investigated by researchers in child development and sociology.

It is controversial if leaving discretion to children is a better approach to parenting than setting strict limits.
The impact of parental home inputs on children’s outcomes has been widely studied by economists.

The effectiveness of alternative parenting strategies in producing desirable child outcomes has been investigated by researchers in child development and sociology.

It is controversial if leaving discretion to children is a better approach to parenting than setting strict limits.

It has been recently been suggested that the “Chinese” parenting model, as opposed to “Western” parenting, is the main source of academic success of Asian children with respect to their peers.
Addressing this debate from an economic prospective:

1. enhances our understanding of the impact of parental inputs on children’s human capital
Addressing this debate from an economic prospective:

1. enhances our understanding of the impact of parental inputs on children’s human capital
2. is consistent with recent evidence about the importance of discipline/motivation for the formation of cognitive skills
Addressing this debate from an economic prospective:

1. enhances our understanding of the impact of parental inputs on children’s human capital

2. is consistent with recent evidence about the importance of discipline/motivation for the formation of cognitive skills

3. has potentially important implications for public policies that ease parents’ monitoring cost by restricting children's recreational activities
Addressing this debate from an economic prospective:

1. enhances our understanding of the impact of parental inputs on children’s human capital
2. is consistent with recent evidence about the importance of discipline/motivation for the formation of cognitive skills
3. has potentially important implications for public policies that ease parents’ monitoring cost by restricting children’s recreational activities
4. allows us to more closely look at parent-child interaction
Introduction
Parenting in the Data

- Data from the NLSY97 indicate that parental choices regarding limits vary across households.
Data from the NLSY97 indicate that parental choices regarding limits vary across households.

The Autonomy/Parental control section contained in the NLSY97 Youth Questionnaire asks, among others, the following questions: “Who sets the limits on...”
Introduction
Parenting in the Data

- Data from the NLSY97 indicate that parental choices regarding limits vary across households.

The Autonomy/Parental control section contained in the NLSY97 Youth Questionnaire asks, among others, the following questions: “Who sets the limits on...

- : how late you stay out at night?”
Introduction

Parenting in the Data

Data from the NLSY97 indicate that parental choices regarding limits vary across households.

The Autonomy/Parental control section contained in the NLSY97 Youth Questionnaire asks, among others, the following questions: “Who sets the limits on...

- : how late you stay out at night?”
- : who you can hang out with?”
Data from the NLSY97 indicate that parental choices regarding limits vary across households.

The Autonomy/Parental control section contained in the NLSY97 *Youth Questionnaire* asks, among others, the following questions: “Who sets the limits on…

- how late you stay out at night?”
- who you can hang out with?”
- what kinds of tv shows and movies you watch?”
Data from the NLSY97 indicate that parental choices regarding limits vary across households.

The Autonomy/Parental control section contained in the NLSY97 Youth Questionnaire asks, among others, the following questions: “Who sets the limits on...”

- how late you stay out at night?”
- who you can hang out with?”
- what kinds of tv shows and movies you watch?”
Introduction
Parenting in the Data

Data from the NLSY97 indicate that parental choices regarding limits vary across households.

The Autonomy/Parental control section contained in the NLSY97 Youth Questionnaire asks, among others, the following questions: “Who sets the limits on...”

- : how late you stay out at night?”
- : who you can hang out with?”
- : what kinds of tv shows and movies you watch?”

Each question has three mutually exclusive possible answers:
Introduction
Parenting in the Data

Data from the NLSY97 indicate that parental choices regarding limits vary across households.

The Autonomy/Parental control section contained in the NLSY97 Youth Questionnaire asks, among others, the following questions: “Who sets the limits on…

- how late you stay out at night?”
- who you can hang out with?”
- what kinds of tv shows and movies you watch?”

Each question has three mutually exclusive possible answers:

- PARENT OR PARENTS SET LIMITS
Introduction
Parenting in the Data

Data from the NLSY97 indicate that parental choices regarding limits vary across households.

The Autonomy/Parental control section contained in the NLSY97 Youth Questionnaire asks, among others, the following questions: “Who sets the limits on...

- how late you stay out at night?”
- who you can hang out with?”
- what kinds of tv shows and movies you watch?”

Each question has three mutually exclusive possible answers:

- PARENT OR PARENTS SET LIMITS
- PARENTS LET ME DECIDE
Data from the NLSY97 indicate that parental choices regarding limits vary across households.

The Autonomy/Parental control section contained in the NLSY97 Youth Questionnaire asks, among others, the following questions: “Who sets the limits on...

- how late you stay out at night?
- who you can hang out with?
- what kinds of tv shows and movies you watch?”

Each question has three mutually exclusive possible answers:

- PARENT OR PARENTS SET LIMITS
- PARENTS LET ME DECIDE
- MY PARENTS AND I DECIDE JOINTLY
Introduction
Parenting in the Data

- Data from the NLSY97 indicate that parental choices regarding limits vary across households.

The Autonomy/Parental control section contained in the NLSY97 Youth Questionnaire asks, among others, the following questions: “Who sets the limits on...

- how late you stay out at night?”
- who you can hang out with?”
- what kinds of tv shows and movies you watch?”

Each question has three mutually exclusive possible answers:

- PARENT OR PARENTS SET LIMITS
- PARENTS LET ME DECIDE
- MY PARENTS AND I DECIDE JOINTLY
Introduction
Statistics on Parenting Styles

<table>
<thead>
<tr>
<th>Table: Curfew Limit by Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Parents</td>
</tr>
<tr>
<td>Jointly/Child</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

1984 cohort

<table>
<thead>
<tr>
<th>Table: Friends Limit by Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Parents</td>
</tr>
<tr>
<td>Jointly/Child</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

1984 cohort

<table>
<thead>
<tr>
<th>Table: TV Limit by Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Parents</td>
</tr>
<tr>
<td>Jointly/Child</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

1984 cohort
Introduction
Statistics on Parenting Styles

Table: Curfew Limit by Age

<table>
<thead>
<tr>
<th></th>
<th>12-13</th>
<th>13-14</th>
<th>14-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>67.04</td>
<td>54.79</td>
<td>46.31</td>
</tr>
<tr>
<td>Jointly/Child</td>
<td>32.96</td>
<td>45.21</td>
<td>53.69</td>
</tr>
<tr>
<td>N</td>
<td>1341</td>
<td>1305</td>
<td>1274</td>
</tr>
</tbody>
</table>

1984 cohort

Table: Friends Limit by Age

<table>
<thead>
<tr>
<th></th>
<th>12-13</th>
<th>13-14</th>
<th>14-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>22.09</td>
<td>11.67</td>
<td>9.08</td>
</tr>
<tr>
<td>Jointly/Child</td>
<td>77.91</td>
<td>88.33</td>
<td>90.92</td>
</tr>
<tr>
<td>N</td>
<td>1340</td>
<td>1302</td>
<td>1278</td>
</tr>
</tbody>
</table>

1984 cohort
Introduction

Statistics on Parenting Styles

<table>
<thead>
<tr>
<th>Table: Curfew Limit by Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12-13</td>
</tr>
<tr>
<td>Parents</td>
</tr>
<tr>
<td>Jointly/Child</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

1984 cohort

<table>
<thead>
<tr>
<th>Table: Friends Limit by Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12-13</td>
</tr>
<tr>
<td>Parents</td>
</tr>
<tr>
<td>Jointly/Child</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

1984 cohort

<table>
<thead>
<tr>
<th>Table: TV Limit by Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12-13</td>
</tr>
<tr>
<td>Parents</td>
</tr>
<tr>
<td>Jointly/Child</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

1984 cohort
Introduction
Statistics on Parental Limits

Table: Curfew by Race

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Hispanic</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>75.76</td>
<td>67.45</td>
<td>64.82</td>
</tr>
<tr>
<td>Jointly/Child</td>
<td>24.24</td>
<td>32.55</td>
<td>35.18</td>
</tr>
<tr>
<td>N</td>
<td>435</td>
<td>381</td>
<td>901</td>
</tr>
</tbody>
</table>

1984 cohort, age:12-13
Introduction

Statistics on Parental Limits

Table: Curfew by Race

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Hispanic</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>75.76</td>
<td>67.45</td>
<td>64.82</td>
</tr>
<tr>
<td>Jointly/Child</td>
<td>24.24</td>
<td>32.55</td>
<td>35.18</td>
</tr>
</tbody>
</table>

N: 435, 381, 901

1984 cohort, age:12-13

Table: Friends Limit by Race

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Hispanic</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>34.59</td>
<td>28.16</td>
<td>17.44</td>
</tr>
<tr>
<td>Jointly/Child</td>
<td>65.41</td>
<td>71.84</td>
<td>82.56</td>
</tr>
</tbody>
</table>

N: 425, 380, 900

1984 cohort, age:12-13
Introduction
Statistics on Parental Limits

Table: Curfew by Race

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Hispanic</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>75.76</td>
<td>67.45</td>
<td>64.82</td>
</tr>
<tr>
<td>Jointly/Child</td>
<td>24.24</td>
<td>32.55</td>
<td>35.18</td>
</tr>
<tr>
<td>N</td>
<td>435</td>
<td>381</td>
<td>901</td>
</tr>
</tbody>
</table>

1984 cohort, age:12-13

Table: Friends Limit by Race

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Hispanic</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>34.59</td>
<td>28.16</td>
<td>17.44</td>
</tr>
<tr>
<td>Jointly/Child</td>
<td>65.41</td>
<td>71.84</td>
<td>82.56</td>
</tr>
<tr>
<td>N</td>
<td>425</td>
<td>380</td>
<td>900</td>
</tr>
</tbody>
</table>

1984 cohort, age:12-13

Table: TV Limit by Race

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Hispanic</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parents</td>
<td>35.53</td>
<td>35.96</td>
<td>37.36</td>
</tr>
<tr>
<td>Jointly/Child</td>
<td>67.47</td>
<td>64.04</td>
<td>62.64</td>
</tr>
<tr>
<td>N</td>
<td>435</td>
<td>381</td>
<td>902</td>
</tr>
</tbody>
</table>

1984 cohort, age:12-13
Goal of the Paper and Main Finding

- Develop and estimate a model of parent-child interaction to better understand the relationship between parenting styles and children’s human capital

Finding:
One size does not fit all: strict parenting in not the best policy for all type of children

Implication: a mandatory curfew law could have positive or negative effects on children’s cognitive skills (PIAT MATH test scores)
Goal of the Paper and Main Finding

- Develop and estimate a model of parent-child interaction to better understand the relationship between parenting styles and children’s human capital
- Use the estimated model to simulate the effects of “authoritarian” parenting on children’s behavior

Finding:
One size does not fit all: strict parenting in not the best policy for all type of children

Implication: a mandatory curfew law could have positive or negative effects on children’s cognitive skills (PIAT MATH test scores)
Goal of the Paper and Main Finding

- Develop and estimate a model of parent-child interaction to better understand the relationship between parenting styles and children’s human capital
- Use the estimated model to simulate the effects of “authoritarian” parenting on children’s behavior

Finding:
- One size does not fit all: strict parenting in not the best policy for all type of children
Goal of the Paper and Main Finding

- Develop and estimate a model of parent-child interaction to better understand the relationship between parenting styles and children’s human capital
- Use the estimated model to simulate the effects of “authoritarian” parenting on children’s behavior

Finding:

- One size does not fit all: strict parenting in not the best policy for all type of children
- Implication: a mandatory curfew law could have positive or negative effects on children’s cognitive skills (PIAT MATH test scores)
The game
Information structure and order of moves

- There are two forward looking players: the parent and the child
The game
Information structure and order of moves

- There are two forward looking players: the parent and the child
- Two periods

- Child’s effort is imperfectly monitored by parents (moral hazard)
- Parents are uncertain about the child’s valuation of her human capital (adverse selection)

The order of moves in the stage game is as follows:
- Conditional on the stock of human capital, G_{t-1} and the beliefs about the type of the child, p_{t-1}, parents choose one of three parenting styles: strict, neutral, permissive; $R_t \in \{s, n, p\}$
- The child chooses an effort level $e_t \in [0, 1]$ (unobserved by parents)
- A shock ϵ_t, unobserved by parents, is drawn
- Child’s human capital realization, G_t, becomes public
- Parents update their initial beliefs p_{t-1}
- The stage game is repeated
The game
Information structure and order of moves

- There are two forward looking players: the parent and the child
- Two periods
- Child’s effort is imperfectly monitored by parents (moral hazard)
The game
Information structure and order of moves

- There are two forward looking players: the parent and the child
- Two periods
- Child’s effort is imperfectly monitored by parents (moral hazard)
- Parents are uncertain about the child’s valuation of her human capital (adverse selection)
The game
Information structure and order of moves

- There are two forward looking players: the parent and the child
- Two periods
- Child’s effort is imperfectly monitored by parents (moral hazard)
- Parents are uncertain about the child’s valuation of her human capital (adverse selection)

The order of moves in the stage game is as follows:
- Conditional on the stock of human capital, G_{t-1} and the beliefs about the type of the child, p_{t-1}, parents choose one of three parenting styles: strict, neutral, permissive; $R_t \in \{s, n, p\}$
The game
Information structure and order of moves

- There are two forward looking players: the parent and the child
- Two periods
- Child’s effort is imperfectly monitored by parents (moral hazard)
- Parents are uncertain about the child’s valuation of her human capital (adverse selection)

The order of moves in the stage game is as follows:
- Conditional on the stock of human capital, G_{t-1} and the beliefs about the type of the child, p_{t-1}, parents choose one of three parenting styles: strict, neutral, permissive; $R_t \in \{s, n, p\}$
- The child chooses an effort level $e_t \in [0, 1]$ (unobserved by parents)
The game
Information structure and order of moves

- There are two forward looking players: the parent and the child
- Two periods
- Child’s effort is imperfectly monitored by parents (moral hazard)
- Parents are uncertain about the child’s valuation of her human capital (adverse selection)

The order of moves in the stage game is as follows:

- Conditional on the stock of human capital, G_{t-1} and the beliefs about the type of the child, p_{t-1}, parents choose one of three parenting styles: strict, neutral, permissive; $R_t \in \{s, n, p\}$
- The child chooses an effort level $e_t \in [0, 1]$ (unobserved by parents)
- A shock ϵ_t, unobserved by parents, is drawn
The game

Information structure and order of moves

- There are two forward looking players: the parent and the child
- Two periods
- Child’s effort is imperfectly monitored by parents (moral hazard)
- Parents are uncertain about the child’s valuation of her human capital (adverse selection)

The order of moves in the stage game is as follows:

- Conditional on the stock of human capital, G_{t-1} and the beliefs about the type of the child, p_{t-1}, parents choose one of three parenting styles: strict, neutral, permissive; $R_t \in \{s, n, p\}$
- The child chooses an effort level $e_t \in [0, 1]$ (unobserved by parents)
- A shock ϵ_t, unobserved by parents, is drawn
- Child’s human capital realization, G_t, becomes public
The game
Information structure and order of moves

- There are two forward looking players: the parent and the child
- Two periods
- Child’s effort is imperfectly monitored by parents (moral hazard)
- Parents are uncertain about the child’s valuation of her human capital (adverse selection)

The order of moves in the stage game is as follows:

- Conditional on the stock of human capital, G_{t-1} and the beliefs about the type of the child, p_{t-1}, parents choose one of three parenting styles: strict, neutral, permissive; $R_t \in \{s, n, p\}$
- The child chooses an effort level $e_t \in [0, 1]$ (unobserved by parents)
- A shock ϵ_t, unobserved by parents, is drawn
- Child’s human capital realization, G_t, becomes public
- Parents update their initial beliefs p_{t-1}
The game
Information structure and order of moves

- There are two forward looking players: the parent and the child
- Two periods
- Child’s effort is imperfectly monitored by parents (moral hazard)
- Parents are uncertain about the child’s valuation of her human capital (adverse selection)

The order of moves in the stage game is as follows:

- Conditional on the stock of human capital, G_{t-1} and the beliefs about the type of the child, p_{t-1}, parents choose one of three parenting styles: strict, neutral, permissive; $R_t \in \{s, n, p\}$
- The child chooses an effort level $e_t \in [0, 1]$ (unobserved by parents)
- A shock ϵ_t, unobserved by parents, is drawn
- Child’s human capital realization, G_t, becomes public
- Parents update their initial beliefs p_{t-1}
- The stage game is repeated
Primitives
Child’s Preferences

Child:
- cares about leisure and prefers loose limits
Primitives
Child's Preferences

Child:
- cares about leisure and prefers loose limits
- cares about her human capital
Primitives
Child’s Preferences

Child:

- cares about leisure and prefers loose limits
- cares about her human capital

\[u_t = \begin{cases}
(1 - e_t)w(R_t) & \text{if } t = 1, 2 \\
\omega_i G_2, i \in \{L, H\} & \text{when the game is over} \end{cases} \]

where:
- \(0 < \omega_L < \omega_H\)
Primitives
Child’s Preferences

Child:

- cares about leisure and prefers loose limits
- cares about her human capital

\[u_t = \begin{cases}
(1 - e_t)w(R_t) & \text{if } t = 1, 2 \\
\omega_i G_2 , i \in \{L, H\} & \text{when the game is over}
\end{cases} \]

where:

- \(0 < \omega_L < \omega_H \)
- \(w(R_t) = \mathbb{I}[R_t = s] + \mathbb{I}[R_t = n]\mu_n + \mathbb{I}[R_t = p]\mu_p \)
Primitives

Child’s Preferences

Child:

- cares about leisure and prefers loose limits
- cares about her human capital

\[u_t = \begin{cases}
(1 - e_t)w(R_t) & \text{if } t = 1, 2 \\
\omega_i G_2, i \in \{L, H\} & \text{when the game is over}
\end{cases} \]

where:

- \(0 < \omega_L < \omega_H \)
- \(w(R_t) = I[R_t = s] + I[R_t = n] \mu_n + I[R_t = p] \mu_p \)
- \(\mu_p > \mu_n > \mu_s = 1 \Rightarrow \) stricter limits diminish the value of recreational activities

- parents have a prior \(p_0 \) on the vector of types \(\omega \) at the beginning of the first period
Parents

- Care about the child’s human capital
Primitives
Parents’ Preferences

Parents
- Care about the child’s human capital
- Dislike strict parenting
Primitives

Parents’ Preferences

Parents

- Care about the child’s human capital
- Dislike strict parenting

Parents’ preferences are given by:

\[
v_t = \begin{cases}
 y(R_t) & \text{if } t = 1, 2 \\
 \log(G_2) & \text{when the game is over.}
\end{cases}
\]
Primitives

Parents’ Preferences

Parents
- Care about the child’s human capital
- Dislike strict parenting

Parents’ preferences are given by:

\[
v_t = \begin{cases}
 y(R_t) & \text{if } t = 1, 2 \\
 \log(G_2) & \text{when the game is over.}
\end{cases}
\]

with:
- \(y(R_t) = -I[R_t = s]c_s - I[R_t = n]c_n \)
Primitives

Parents’ Preferences

Parents

- Care about the child’s human capital
- Dislike strict parenting

Parents’ preferences are given by:

\[v_t = \begin{cases}
 y(R_t) & \text{if } t = 1, 2 \\
 \log(G_2) & \text{when the game is over.}
\end{cases} \]

with:

- \(y(R_t) = -I[R_t = s]c_s - I[R_t = n]c_n \)
- \(c_s > c_n > c_p = 0 \Rightarrow \text{stricter limits imply an higher monitoring cost} \)
Primitives

Human Capital Production Function

Human Capital G_t is produced according to the following production function:

$$G_t = F(e_t, G_{t-1}; \epsilon_t) = \gamma[e_t^\alpha - \alpha e_t] G_{t-1}^\beta \epsilon_t$$
Primitives
Human Capital Production Function

Human Capital G_t is produced according to the following production function:

$$G_t = F(e_t, G_{t-1}; \epsilon_t) = \gamma [e_t^\alpha - \alpha e_t] G_{t-1}^\beta \epsilon_t$$

with $G_0 > 0$, $\epsilon_t \sim \exp(\lambda)$, $\alpha \in (0,1)$ and $\gamma, \beta > 0$. This implies that:
Human Capital G_t is produced according to the following production function:

$$G_t = F(e_t, G_{t-1}; \epsilon_t) = \gamma[e_t^\alpha - \alpha e_t] G_{t-1}^\beta \epsilon_t$$

with $G_0 > 0$, $\epsilon_t \sim \exp(\lambda)$, $\alpha \in (0, 1)$ and $\gamma, \beta > 0$. This implies that:

- $G_t \in [0, \infty)$
Primitives

Human Capital Production Function

Human Capital G_t is produced according to the following production function:

$$G_t = F(e_t, G_{t-1}; \epsilon_t) = \gamma[e_t^\alpha - \alpha e_t]G_{t-1}^\beta \epsilon_t$$

with $G_0 > 0$, $\epsilon_t \sim \exp(\lambda)$, $\alpha \in (0, 1)$ and $\gamma, \beta > 0$. This implies that:

- $G_t \in [0, \infty)$
- Bayes’ rule applies everywhere
- MLRP property holds
Human Capital G_t is produced according to the following production function:

$$G_t = F(e_t, G_{t-1}; \epsilon_t) = \gamma[e_t^{\alpha} - \alpha e_t]G_{t-1}^{\beta}\epsilon_t$$

with $G_0 > 0$, $\epsilon_t \sim \text{exp}(\lambda)$, $\alpha \in (0, 1)$ and $\gamma, \beta > 0$. This implies that:

- $G_t \in [0, \infty)$
- Bayes’ rule applies everywhere
- MLRP property holds

In particular:

- G_0 incorporates initial differences in ability/motivation, quality of instruction
Human Capital G_t is produced according to the following production function:

$$G_t = F(e_t, G_{t-1}; \epsilon_t) = \gamma [e_t^\alpha - \alpha e_t] G_{t-1}^\beta \epsilon_t$$

with $G_0 > 0$, $\epsilon_t \sim \exp(\lambda)$, $\alpha \in (0, 1)$ and $\gamma, \beta > 0$. This implies that:

- $G_t \in [0, \infty)$
- Bayes’ rule applies everywhere
- MLRP property holds

In particular:

- G_0 incorporates initial differences in ability/motivation, quality of instruction
- G_t is observable and measured by test scores
Primitives

Human Capital Production Function

Human Capital G_t is produced according to the following production function:

$$G_t = F(e_t, G_{t-1}; \epsilon_t) = \gamma[e_t^\alpha - \alpha e_t]G_{t-1}^\beta \epsilon_t$$

with $G_0 > 0$, $\epsilon_t \sim \exp(\lambda)$, $\alpha \in (0, 1)$ and $\gamma, \beta > 0$. This implies that:

- $G_t \in [0, \infty)$
- Bayes’ rule applies everywhere
- MLRP property holds

In particular:

- G_0 incorporates initial differences in ability/motivation, quality of instruction
- G_t is observable and measured by test scores
- ϵ_t captures i.i.d. unobservable inputs
Equilibrium

- Solution concept: PBE

Lemma: For any finite number of types, there exists a unique equilibrium in which:

1. The child plays a type monotonic strategy, i.e., children with higher ω_i choose more effort in both periods.
2. Parents play a cut-off strategy in the second period of the form:

$$R_2 = \begin{cases}
\text{strict if } 0 < G_1 < G \\
\text{neutral if } G \leq G_1 < G \\
\text{permissive otherwise.}
\end{cases}$$

where $G \geq G_1 \geq 0$ are endogenously determined cut-offs.

There exists a unique optimal action $R_1 \in \{s, n, p\}$ as a function of the initial child's human capital and beliefs about her type.
Equilibrium

- Solution concept: PBE
- I focus my attention on the class of cut-off equilibria

Lemma:

For any finite number of types, there exists a unique equilibrium in which:

1. The child plays a type monotonic strategy, i.e., children with higher ω_i choose more effort in both periods.
2. Parents play a cut-off strategy in the second period of the form:

\[
R_2 = \begin{cases}
\text{strict if } 0 < G_1 < G \\
\text{neutral if } G_1 < G < G_2 \\
\text{permissive otherwise.}
\end{cases}
\]

where $G \geq G_1 \geq G_2$ are endogenously determined cut-offs.

There exists a unique optimal action $R_1 \in \{s, n, p\}$ as function of the initial child's human capital and beliefs about her type.
Equilibrium

- Solution concept: PBE
- I focus my attention on the class of cut-off equilibria

Lemma: For any finite number of types, there exists a unique equilibrium in which:

1. The child plays a type monotonic strategy, i.e. children with higher \(\omega_i \) choose more effort in both periods.
2. Parents play a cut-off strategy in the second period of the form:
 \[
 R_2 = \begin{cases}
 \text{strict} & \text{if } 0 < G_1 < G_2 \\
 \text{neutral} & \text{if } G_1 \leq G_2 < G_3 \\
 \text{permissive} & \text{otherwise.}
 \end{cases}
 \]

 where \(G \geq G \geq 0 \) are endogenously determined cut-offs.

There exists a unique optimal action \(R_1 \in \{s, n, p\} \) as function of the initial child's human capital and beliefs about her type.
Equilibrium

- Solution concept: PBE
- I focus my attention on the class of cut-off equilibria

Lemma: For any finite number of types, there exists a unique equilibrium in which:

1. the child plays a type monotonic strategy, i.e. children with higher ω_i choose more effort in both periods

$$R_2 = \begin{cases}
\text{strict} & \text{if } 0 < G_1 < G \\
\text{neutral} & \text{if } G_1 < G \\
\text{permissive} & \text{otherwise.}
\end{cases}$$

where $G \geq G_1 \geq 0$ are endogenously determined cut-offs

There exists a unique optimal action $R_1 \in \{s, n, p\}$ as function of the initial child's human capital and beliefs about her type.
Equilibrium

- Solution concept: PBE
- I focus my attention on the class of cut-off equilibria

Lemma: For any finite number of types, there exists a unique equilibrium in which:

1. the child plays a type monotonic strategy, i.e. children with higher ω_i choose more effort in both periods
2. parents play a cut-off strategy in the second period of the form:

 $$R_2 = \begin{cases}
 strict & \text{if } 0 < G_1 < G \\
 neutral & \text{if } G \leq G_1 < \overline{G} \\
 permissive & \text{otherwise.}
 \end{cases}$$

where $\overline{G} \geq G \geq 0$ are endogenously determined cut-offs

- There exists a unique optimal action $R_1 \in \{s, n, p\}$ as function of the initial child’s human capital and beliefs about her type
Empirical Implementation

Empirical Implementation

Empirical Implementation

- I use the curfew variable as a proxy for parenting style.
Empirical Implementation

- I use the curfew variable as a proxy for parenting style.
- The PIAT Math test scores measure children’s cognitive skills.
I estimate the parameters of model by SML, by iterating between the numerical solution of the model, achieved through the solution of a system on non-linear equations, and the calculation of the likelihood function.
Estimation and Fit

- I estimate the parameters of model by SML, by iterating between the numerical solution of the model, achieved through the solution of a system on non-linear equations, and the calculation of the likelihood function.
- Parental prior about a child’s type is allowed to differ across families.
I estimate the parameters of model by SML, by iterating between the numerical solution of the model, achieved through the solution of a system on non-linear equations, and the calculation of the likelihood function.

Parental prior about a child’s type is allowed to differ across families.

Children differ in terms of their “valuation” type and the initial human capital.
Estimation and Fit

- I estimate the parameters of model by SML, by iterating between the numerical solution of the model, achieved through the solution of a system on non-linear equations, and the calculation of the likelihood function.
- Parental prior about a child’s type is allowed to differ across families.
- Children differ in terms of their “valuation” type and the initial human capital.
- The probability statements which constitute the likelihood are constructed by using measurement error.
I estimate the parameters of model by SML, by iterating between the numerical solution of the model, achieved through the solution of a system on non-linear equations, and the calculation of the likelihood function.

- Parental prior about a child’s type is allowed to differ across families.
- Children differ in terms of their “valuation” type and the initial human capital.
- The probability statements which constitute the likelihood are constructed by using measurement error.
- The model can generate the age pattern of parenting styles and human capital observed in the data.
I estimate the parameters of model by SML, by iterating between the numerical solution of the model, achieved through the solution of a system on non-linear equations, and the calculation of the likelihood function.

- Parental prior about a child’s type is allowed to differ across families.
- Children differ in terms of their “valuation” type and the initial human capital.
- The probability statements which constitute the likelihood are constructed by using measurement error.
- The model can generate the age pattern of parenting styles and human capital observed in the data.
- The model overpredicts the probability of switching from one to another parenting regime.
Estimation and Fit

- I estimate the parameters of model by SML, by iterating between the numerical solution of the model, achieved through the solution of a system on non-linear equations, and the calculation of the likelihood function.
- Parental prior about a child’s type is allowed to differ across families.
- Children differ in terms of their “valuation” type and the initial human capital.
- The probability statements which constitute the likelihood are constructed by using measurement error.
- The model can generate the age pattern of parenting styles and human capital observed in the data.
- The model overpredicts the probability of switching from one to another parenting regime.
A Thought Experiment

- I use the model to assess the impact of strict parenting: the child in left no autonomy regardless of his performances
A Thought Experiment

- I use the model to assess the impact of strict parenting: the child in left no autonomy regardless of his performances
- Under certain assumption this experiment can be thought as if the government takes out of the hands of the parents the decision about the curfew (mandatory curfew law)

<table>
<thead>
<tr>
<th>G</th>
<th>24.99%</th>
<th>27.51%</th>
<th>15.86%</th>
<th>2.2%</th>
<th>8.57%</th>
<th>4.82%</th>
<th>-5.78%</th>
<th>-7.23%</th>
<th>-4.98%</th>
<th>-13.88%</th>
</tr>
</thead>
</table>

Intuition: Because children like loose limits a curfew law restricts the instruments available to parents to reward good performances.
A Thought Experiment

- I use the model to assess the impact of strict parenting: the child in left no autonomy regardless of his performances
- Under certain assumption this experiment can be thought as if the government takes out of the hands of the parents the decision about the curfew (mandatory curfew law)
- The results indicate that the the average effect (ATE) of this public policy would increase children’s human capital by about 3%
A Thought Experiment

- I use the model to assess the impact of strict parenting: the child left no autonomy regardless of his performances.
- Under certain assumption this experiment can be thought as if the government takes out of the hands of the parents the decision about the curfew (mandatory curfew law).
- The results indicate that the average effect (ATE) of this public policy would increase children’s human capital by about 3%.
- The distribution of the policy would be different depending on the initial conditions.

Table: Distribution of Level Effect

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
<th>G8</th>
<th>G9</th>
<th>G10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24.99%</td>
<td>27.51%</td>
<td>15.86%</td>
<td>2.2%</td>
<td>8.57%</td>
<td>4.82%</td>
<td>-5.78%</td>
<td>-7.23%</td>
<td>-4.98%</td>
<td>-13.88%</td>
</tr>
</tbody>
</table>
A Thought Experiment

- I use the model to assess the impact of strict parenting: the child left no autonomy regardless of his performances.
- Under certain assumption this experiment can be thought as if the government takes out of the hands of the parents the decision about the curfew (mandatory curfew law).
- The results indicate that the average effect (ATE) of this public policy would increase children’s human capital by about 3%.
- The distribution of the policy would be different depending on the initial conditions.

<table>
<thead>
<tr>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
<th>G7</th>
<th>G8</th>
<th>G9</th>
<th>G10</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.99%</td>
<td>27.51%</td>
<td>15.86%</td>
<td>2.2%</td>
<td>8.57%</td>
<td>4.82%</td>
<td>-5.78%</td>
<td>-7.23%</td>
<td>-4.98%</td>
<td>-13.88%</td>
</tr>
</tbody>
</table>

Intuition: Because children like loose limits a curfew law restricts the instruments available to parents to reward good performances.
In this paper I addressed the issue of “optimal parenting” by providing an estimable model of parent-child interaction.
Conclusions

- In this paper I addressed the issue of “optimal parenting” by providing an estimable model of parent-child interaction.
- The emphasis was on incorporating both dynamics and asymmetric information/moral hazard, consistently with the existing literature on parent-child interaction and recent empirical evidence.
Conclusions

- In this paper I addressed the issue of “optimal parenting” by providing an estimable model of parent-child interaction.
- The emphasis was on incorporating both dynamics and asymmetric information/moral hazard, consistently with the existing literature on parent-child interaction and recent empirical evidence.
- Some extensions are possible: multiple periods and the use of different types of limits.
Conclusions

- In this paper I addressed the issue of “optimal parenting” by providing an estimable model of parent-child interaction.
- The emphasis was on incorporating both dynamics and asymmetric information/moral hazard, consistently with the existing literature on parent-child interaction and recent empirical evidence.
- Some extensions are possible: multiple periods and the use of different types of limits.
- Parent-child interaction is still a black-box: more research in family economics is needed to enrich the existing framework.