Redistributive Taxation in a Partial Insurance Economy

Jonathan Heathcote, Kjetil Storesletten, and Gianluca Violante

Workshop on Family Economics

June 19, 2013
Redistributive Taxation

How progressive should taxes be?

Arguments in favor of progressivity:

1. Social insurance of privately-uninsurable shocks
2. Redistribution from high to low innate ability

Arguments against progressivity:

1. Distortion to distribution of labor supply
2. Distortion to human capital investment
3. Redistribution from low to high taste for leisure
Wanted: Theory of Taxation

Model should incorporate

1. endogenous skill investment \+ endogenous skill prices
2. differential “innate” (learning) ability
3. endogenous labor supply
4. idiosyncratic wage risk: self insurance and some private insurance (other assets, family, etc)
5. heterogeneity in preferences for leisure

Model should be consistent with salient facts

1. A plausible cross-sectional distribution of wages (upper tail is Pareto and the bulk of the distribution is log-normal)
2. The right cross-sectional dispersion and the right co-movement of consumption, hours, and wages.
3. Return to education should be roughly linear in investment
Ramsey Approach

Government/Planner takes policy instruments and market structure as given, and chooses the CE that yields the largest social welfare

- CE of an heterogeneous-agent, incomplete-market economy
- Nonlinear tax/transfer system
 - Public good provision also chosen by the government
- Various social welfare functions
- Tractable equilibrium framework clarifies economic forces shaping the optimal degree of progressivity
Demographics and preferences

- **Perpetual youth** demographics with constant survival probability δ

- **Preferences** over consumption (c), hours (h), publicly-provided goods (G), and skill-investment effort (s):

 \[
 U_i = v_i(s_i) + \mathbb{E}_0 \sum_{t=0}^{\infty} (\beta \delta)^t u_i(c_{it}, h_{it}, G)
 \]

 \[
 v_i(s_i) = -\frac{1}{\kappa_i} \frac{s_i^2}{2\mu}
 \]

 \[
 u_i(c_{it}, h_{it}, G) = \log c_{it} - \exp(\varphi_i) \frac{h_{it}^{1+\sigma}}{1 + \sigma} + \chi \log G
 \]

 \[
 \kappa_i \sim \text{Exp}(\eta)
 \]

 \[
 \varphi_i \sim N\left(\frac{v_\varphi}{2}, v_\varphi\right)
 \]
Technology

• Output is CES aggregator over continuum of skill types:

\[Y = \left[\int_0^\infty N(s) \frac{\theta - 1}{\theta} ds \right]^{\frac{\theta}{\theta - 1}}, \quad \theta \in (1, \infty) \]

• Aggregate effective hours by skill type:

\[N(s) = \int_0^1 I_{\{s_i = s\}} z_i h_i \, di \]

• Aggregate resource constraint:

\[Y = \int_0^1 c_i \, di + G \]
Individual efficiency units of labor

\[
\log z_{it} = \alpha_{it} + \varepsilon_{it}
\]

- \(\alpha_{it} = \alpha_{i,t-1} + \omega_{it} \) with \(\omega_{it} \sim N \left(-\frac{v_\omega}{2}, v_\omega \right) \)
 \(\alpha_{i0} = 0 \) \(\forall i \)

- \(\varepsilon_{it} \) i.i.d. over time with \(\varepsilon_{it} \sim N \left(-\frac{v_\varepsilon}{2}, v_\varepsilon \right) \)

- \(\varphi \perp \kappa \perp \omega \perp \varepsilon \) cross-sectionally and longitudinally

- Pre-government earnings:

 \[
 y_{it} = p(s_i) \times \exp(\alpha_{it} + \varepsilon_{it}) \times h_{it}
 \]

 determined by skill, fortune, and diligence
Government

- Runs a two-parameter tax/transfer function to redistribute and finance publicly-provided goods G

- Disposable (post-government) earnings:

 $$\tilde{y}_i = \lambda y_i^{1-\tau}$$

- Government budget constraint (no government debt):

 $$G = \int_0^1 [y_i - \lambda y_i^{1-\tau}] \, di$$

Government chooses (G, τ), and λ balances the budget residually
Our model of fiscal redistribution

- CPS 2005, $N_{obs} = 52,539$: $R^2 = 0.92$ and $\tau = 0.18$
Representative Agent Warm Up

\[
\max_{C,H} U = \log C - \frac{H^{1+\sigma}}{1 + \sigma} + \chi \log G
\]

s.t.
\[
C = \lambda H^{1-\tau}
\]

Market clearing \(C + G = H\)

Define \(g = G/H\)

Equilibrium allocations:
\[
\log C^{RA}(g, \tau) = \log(1 - g) + \frac{1}{(1 + \sigma)} \log(1 - \tau)
\]
\[
\log H^{RA}(g, \tau) = \frac{1}{(1 + \sigma)} \log(1 - \tau)
\]
Representative Agent Optimal Policy

- Welfare:

\[W^{RA}(g, \tau) = \log(1 - g) + \chi \log g + (1 + \chi) \frac{\log(1 - \tau)}{1 + \sigma} - \frac{1 - \tau}{1 + \sigma} \]

- Welfare maximizing \((g, \tau)\) pair:

\[g^* = \frac{\chi}{1 + \chi} \]
\[\tau^* = -\chi \]

- Allocations are first best (same as with lump-sum taxes)
- Result for \(g^*\) will extend to heterogeneous agent setup

\[W^{RA}(\tau) = \chi \log \chi - (1 + \chi) \log(1 + \chi) + (1 + \chi) \frac{\log(1 - \tau)}{1 + \sigma} - \frac{1 - \tau}{1 + \sigma} \]

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Markets

- Competitive good and labor markets
- Competitive asset markets (all assets in zero net supply)
 - Non state-contingent bond
Markets

• Competitive good and labor markets

• Competitive asset markets (all assets in zero net supply)

 ▶ Non state-contingent bond

 ▶ Full set of insurance claims against ε shocks

 ■ If $v_\varepsilon = 0$, it is a bond economy

 ■ If $v_\omega = 0$, it is a full insurance economy

 ■ If $v_\omega = v_\varepsilon = v_\varphi = 0$ & $\theta = \infty$, it is a RA economy

• Perfect annuity against survival risk

Heathcote-Storesletten-Violante, “Redistributive Taxation in a Partial Insurance Economy”
Budget constraints

1. **Beginning of period**: innovation ω to α shock is realized

2. **Middle of period**: buy insurance against ε:

$$b = \int_E Q(\varepsilon) B(\varepsilon) d\varepsilon,$$

where $Q(\cdot)$ is the price of insurance and $B(\cdot)$ is the quantity

3. **End of period**: ε realized, consumption and hours chosen:

$$c + \delta q b' = \lambda [p(s) \exp(\alpha + \varepsilon) h]^{1-\tau} + B(\varepsilon)$$
Given \((g, \tau)\), a stationary RCE is a value \(\lambda^*\), asset prices \(\{Q(\cdot), q\}\), skill prices \(p(s)\), decision rules \(s(\varphi, \kappa, 0)\), \(c(\alpha, \varepsilon, \varphi, s, b)\), \(h(\alpha, \varepsilon, \varphi, s, b)\), and aggregate quantities \(N(s)\) such that:

- households optimize
- markets clear
- the government budget constraint is balanced
Recursive stationary equilibrium

- Given \((g, \tau)\), a stationary RCE is a value \(\lambda^*\), asset prices \(\{Q(\cdot), q\}\), skill prices \(p(s)\), decision rules \(s(\varphi, \kappa, 0)\), \(c(\alpha, \varepsilon, \varphi, s, b)\), \(h(\alpha, \varepsilon, \varphi, s, b)\), and aggregate quantities \(N(s)\) such that:
 - households optimize
 - markets clear
 - the government budget constraint is balanced

- The equilibrium features **no bond-trading**
 - \(b = 0 \rightarrow\) allocations depend only on exogenous states
 - \(\alpha\) shocks remain uninsured, \(\varepsilon\) shocks fully insured
No bond-trade equilibrium

• Micro-foundations for Constantinides and Duffie (1996)
 ▶ CRRA, unit root shocks to log disposable income
 ▶ In equilibrium, no bond-trade \(c_t = \tilde{y}_t \)

• Unit root disposable income micro-founded in our model:
 1. Skill investment+shocks: \(\rightarrow \) wages
 2. Labor supply choice: wages \(\rightarrow \) pre-tax earnings
 3. Non-linear taxation: pre-tax earnings \(\rightarrow \) after-tax earnings
 4. Private risk sharing: after-tax earnings \(\rightarrow \) disp. income
 5. No bond trade: disposable income = consumption
Equilibrium skill choice and skill price

- FOC \[\frac{s}{\kappa\mu} = (1 - \beta\delta) \frac{\partial U_0(\varphi, s)}{\partial s} = (1 - \tau) \frac{\partial \log p(s)}{\partial s} \]
Equilibrium skill choice and skill price

- FOC \[\frac{s}{\kappa \mu} = (1 - \beta \delta) \frac{\partial U_0(\varphi, s)}{\partial s} = (1 - \tau) \frac{\partial \log p(s)}{\partial s} \]

- Skill price has Mincerian shape: \[\log p(s) = \pi_0 + \pi_1 s \]

\[\pi_1 = \frac{\eta}{\theta \mu (1 - \tau)} \] (return to skill)
Equilibrium skill choice and skill price

• **FOC** → \(\frac{s}{\kappa \mu} = (1 - \beta \delta) \frac{\partial U_0(\varphi, s)}{\partial s} = (1 - \tau) \frac{\partial \log p(s)}{\partial s} \)

• Skill price has **Mincerian shape**: \(\log p(s) = \pi_0 + \pi_1 s \)

\[\pi_1 = \sqrt{\frac{\eta}{\theta \mu (1 - \tau)}} \]

(return to skill)

\[\text{var}(\log p(s)) = \frac{1}{\theta^2} \]

Offsetting effects of \(\tau \) on \(s \) and \(p(s) \) leave pre-tax inequality unchanged

• Distribution of skill prices (in level) is **Pareto with parameter** \(\theta \)

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Upper tail of wage distribution

Top 1pct of the Wage Distribution

Model Wage Distribution
Lognormal Wage Distribution

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Equilibrium consumption allocation

\[
\log c^*(\alpha, \varphi, s; g, \tau) = \log C^{RA}(g, \tau) + \underbrace{\mathcal{M}(v_\varepsilon)}_{\text{level effect from ins. variation}} + (1 - \tau) \log p(s; \tau) - (1 - \tau) \varphi + (1 - \tau) \alpha
\]

- Response to variation in \((p(s), \varphi, \alpha)\) mediated by progressivity
- Invariant to insurable shock \(\varepsilon\)
Equilibrium hours allocation

\[\log h^*(\varepsilon, \varphi; g, \tau) = \log H^{RA}(g, \tau) - \frac{1}{\hat{\sigma}(1 - \tau)} \mathcal{M}(v_\varepsilon) \]

\[
= \underbrace{\log H^{RA}(g, \tau)}_{\text{level effect from ins. variation}} - \varphi + \frac{1}{\hat{\sigma}} \varepsilon
\]

- Response to \(\varepsilon \) mediated by \textit{tax-modified} Frisch elasticity \(\frac{1}{\hat{\sigma}} = \frac{1 - \tau}{\sigma + \tau} \)

- Invariant to skill price \(p(s) \) and uninsurable shock \(\alpha \)
Utilitarian Social Welfare Function

- Steady states with constant \((g, \tau)\)

\[
\mathcal{W}(g, \tau) \propto \sum_{k=-\infty}^{\infty} \mu_k \int_0^1 U_{i,k}(\cdot; g, \tau) \, di
\]

- Government sets weights: \(\mu_k = \beta^k \times \text{cohort size}\)
 - SWF becomes average period utility in the cross-section
 - Skill acquisition cost for those currently alive imputed to SWF proportionally to their remaining lifetime

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Exact expression for SWF

\[\mathcal{W}(g, \tau) = \log(1 - g) + \chi \log g + (1 + \chi) \frac{\log(1 - \tau)}{(1 + \hat{\sigma})(1 - \tau)} - \frac{1}{(1 + \hat{\sigma})} \\
+ (1 + \chi) \left[- \frac{1}{\theta - 1} \log \left(\sqrt{\frac{\eta \theta}{\mu (1 - \tau)}} \right) + \frac{\theta}{\theta - 1} \log \left(\frac{\theta}{\theta - 1} \right) \right] \\
- \frac{1}{2\theta} (1 - \tau) - \left[- \log \left(1 - \left(\frac{1 - \tau}{\theta} \right) \right) - \left(\frac{1 - \tau}{\theta} \right) \right] \\
- (1 - \tau)^2 \frac{\nu_\varphi}{2} \\
- \left[(1 - \tau) \frac{\delta}{1 - \delta} \frac{\nu_\omega}{2} - \log \left(1 - \delta \exp \left(- \frac{\tau (1 - \tau)}{2} \nu_\omega \right) \right) \right] \\
- (1 + \chi) \frac{1}{\hat{\sigma}^2} \frac{\nu_\varepsilon}{2} + (1 + \chi) \frac{1}{\hat{\sigma}} \nu_\varepsilon \]

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Representative Agent component

\[\mathcal{W}(g, \tau) = \log(1 - g) + \chi \log g + (1 + \chi) \frac{\log(1 - \tau)}{(1 + \hat{\sigma})(1 - \tau)} - \frac{1}{(1 + \hat{\sigma})} \]

Representative Agent Welfare = \(\mathcal{W}^{RA}(g, \tau) \)

\[+ (1 + \chi) \left[-\frac{1}{\theta - 1} \log \left(\sqrt{\frac{\eta \theta}{\mu(1 - \tau)}} \right) + \frac{\theta}{\theta - 1} \log \left(\frac{\theta}{\theta - 1} \right) \right] \]

\[- \frac{1}{2\theta} (1 - \tau) - \left[-\log \left(1 - \left(\frac{1 - \tau}{\theta} \right) \right) - \left(\frac{1 - \tau}{\theta} \right) \right] \]

\[- (1 - \tau)^2 \frac{v_\varphi}{2} \]

\[- \left[(1 - \tau) \frac{\delta}{1 - \delta} \frac{v_\omega}{2} - \log \left(\frac{1 - \delta \exp \left(\frac{-\tau(1 - \tau)}{2} v_\omega \right)}{1 - \delta} \right) \right] \]

\[-(1 + \chi)\sigma \frac{1}{\hat{\sigma}^2} \frac{v_\varepsilon}{2} + (1 + \chi) \frac{1}{\hat{\sigma}} v_\varepsilon \]
Skill investment component

\[\mathcal{W}(\tau) = \mathcal{W}^{RA}(\tau)\]

\[+ (1 + \chi) \left[-\frac{1}{\theta - 1} \log \left(\sqrt{\frac{\eta}{\mu (1 - \tau)}} \right) + \frac{\theta}{\theta - 1} \log \left(\frac{\theta}{\theta - 1} \right) \right]\]

productivity gain = \(\log \mathbb{E}[(p(s))] = \log \frac{Y}{N}\)

\[-\frac{1}{2\theta} (1 - \tau) - \left[-\log \left(1 - \left(\frac{1 - \tau}{\theta} \right) \right) - \left(\frac{1 - \tau}{\theta} \right) \right]\]

avg. education cost

\[-(1 - \tau)^2 \frac{\nu \varphi}{2}\]

consumption dispersion across skills

\[-\left[(1 - \tau) \frac{\delta}{1 - \delta} \frac{\nu \omega}{2} - \log \left(\frac{1 - \delta \exp \left(\frac{-\tau (1 - \tau)}{2} \nu \omega \right)}{1 - \delta} \right) \right]\]

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Skill investment component

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Uninsurable component

\[\mathcal{W}(\tau) = \mathcal{W}^{RA}(\tau) \]

\[+ (1 + \chi) \left[\frac{-1}{\theta - 1} \log \left(\sqrt{\frac{\eta \theta}{\mu (1 - \tau)}} \right) + \frac{\theta}{\theta - 1} \log \left(\frac{\theta}{\theta - 1} \right) \right] \]

\[- \frac{1}{2\theta} (1 - \tau) - \left[\log \left(1 - \left(\frac{1 - \tau}{\theta} \right) \right) - \left(\frac{1 - \tau}{\theta} \right) \right] \]

\[- \left(1 - \tau \right)^2 \frac{v_\varphi}{2} \]

cons. disp. due to prefs

\[- \left[(1 - \tau) \frac{\delta}{1 - \delta} \frac{v_\omega}{2} - \log \left(\frac{1 - \delta \exp \left(\frac{-(1 - \tau)}{2} v_\omega \right)}{1 - \delta} \right) \right] \]

consumption dispersion due to uninsurable shocks \(\approx \left(1 - \tau \right)^2 \frac{v_\alpha}{2} \)

\[-(1 + \chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_\epsilon}{2} + (1 + \chi) \frac{1}{\hat{\sigma}} v_\epsilon \]

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Insurable component

\[W(\tau) = W^{RA}(\tau) \]

\[+ (1 + \chi) \left[\frac{-1}{\theta - 1} \log \left(\sqrt{\frac{\eta \theta}{\mu (1 - \tau)}} \right) + \frac{\theta}{\theta - 1} \log \left(\frac{\theta}{\theta - 1} \right) \right] \]

\[- \frac{1}{2\theta} (1 - \tau) - \left[- \log \left(1 - \left(\frac{1 - \tau}{\theta} \right) \right) - \left(\frac{1 - \tau}{\theta} \right) \right] \]

\[- (1 - \tau)^2 \frac{v_\varphi}{2} \]

\[- \left[(1 - \tau) \frac{\delta}{1 - \delta} \frac{v_\omega}{2} - \log \left(\frac{1 - \delta \exp \left(\frac{-\tau (1 - \tau) v_\omega}{2} \right)}{1 - \delta} \right) \right] \]

\[-(1 + \chi) \sigma \frac{1}{\hat{\sigma}^2} \frac{v_\varepsilon}{2} + (1 + \chi) \frac{1}{\hat{\sigma}^2} v_\varepsilon \]

hours dispersion prod. gain from ins. shock = \log(N/H)
Parameterization

- Parameter vector $\{\chi, \sigma, \delta, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}\}$
Parameterization

- Parameter vector \(\{\chi, \sigma, \delta, \theta, v_\varphi, v_\omega, v_\varepsilon, \} \)

- To match \(G/Y = 0.20 \): \(\rightarrow \chi = 0.25 \)
Parameterization

- Parameter vector \(\{ \chi, \sigma, \delta, \theta, v_\varphi, v_\omega, v_\varepsilon, \} \)

- To match \(G/Y = 0.20 \):
 \[\rightarrow \chi = 0.25 \]

- Frisch elasticity (micro-evidence):
 \[\rightarrow \sigma = 2 \]
Parameterization

• Parameter vector \(\{\chi, \sigma, \delta, \theta, v_\phi, v_\omega, v_\varepsilon, \} \)

• To match \(G/Y = 0.20 \):
 \[\rightarrow \chi = 0.25 \]

• Frisch elasticity (micro-evidence):
 \[\rightarrow \sigma = 2 \]

\[
\begin{align*}
\text{cov}(\log h, \log w) & = \frac{1}{\hat{\sigma}} v_\varepsilon \\
\text{var}(\log h) & = v_\phi + \frac{1}{\hat{\sigma}^2} v_\varepsilon \\
\text{var}^0(\log c) & = (1 - \tau)^2 \left(v_\phi + \frac{1}{\theta^2} \right) \\
\Delta\text{var}(\log w) & = v_\omega
\end{align*}
\]
Parameterization

- Parameter vector \(\{\chi, \sigma, \delta, \theta, v_{\varphi}, v_{\omega}, v_{\varepsilon}\} \)

- To match \(G/Y = 0.20 \):
 \[\chi = 0.25 \]

- Frisch elasticity (micro-evidence):
 \[\sigma = 2 \]
 \[cov(\log h, \log w) = \frac{1}{\hat{\sigma}} v_{\varepsilon} \rightarrow v_{\varepsilon} = 0.18 \]
 \[var(\log h) = v_{\varphi} + \frac{1}{\hat{\sigma}^2} v_{\varepsilon} \rightarrow v_{\varphi} = 0.06 \]
 \[var^0(\log c) = (1 - \tau)^2 \left(v_{\varphi} + \frac{1}{\hat{\theta}^2} \right) \rightarrow \theta = 3 \]
 \[\Delta var(\log w) = v_{\omega} \rightarrow v_{\omega} = 0.005, \delta = 0.963 \]
Optimal progressivity

Social Welfare Function

Welfare gain = 0.82 pct

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Optimal progressivity: decomposition

Social Welfare Function

- Progressivity rate (τ)
- Welfare change rel. to baseline optimum (% of cons.)

(1) Rep. Agent $\tau = -0.25$

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Optimal progressivity: decomposition

Social Welfare Function

(1) Rep. Agent $\tau = -0.25$

(2) + Skill Inv. $\tau = -0.066$

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Optimal progressivity: decomposition

Social Welfare Function

(1) Rep. Agent $\tau = -0.25$
(2) + Skill Inv. $\tau = -0.066$
(3) + Pref. Het. $\tau = 0.00$

Heathcote-Storesletten-Violante, “Redistributive Taxation in a Partial Insurance Economy”
Optimal progressivity: decomposition

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Actual and optimal progressivity

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Alternative SWF

Utilitarian SWF embeds desire to insure and to redistribute wrt (κ, φ)

Turn off desire to redistribute
Alternative SWF

Utilitarian SWF embeds desire to insure and to redistribute wrt \((\kappa, \varphi)\)

Turn off desire to redistribute

- Economy with heterogeneity in \((\kappa, \varphi)\), and \(\chi = v_\omega = \tau = 0\)
- Compute CE allocations
- Compute Negishii weights s.t. planner’s allocation = CE
- Use these weights in the SWF

Heathcote-Storesletten-Violante, “Redistributive Taxation in a Partial Insurance Economy”
Alternative SWF

<table>
<thead>
<tr>
<th></th>
<th>Utilitarian</th>
<th>κ-neutral</th>
<th>φ-neutral</th>
<th>Insurance-only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redist. wrt κ</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Redist. wrt φ</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Insurance wrt ω</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>τ^*</td>
<td>0.087</td>
<td>0.046</td>
<td>0.030</td>
<td>-0.012</td>
</tr>
<tr>
<td>Welf. gain (pct of c)</td>
<td>0.82</td>
<td>1.33</td>
<td>1.66</td>
<td>2.67</td>
</tr>
</tbody>
</table>
Optimal progressivity: alternative SWF

Heathcote-Storelletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Progressive consumption taxation

\[c = \lambda \tilde{c}^{1-\tau} \]

where \(c \) are expenditures and \(\tilde{c} \) are units of final good

- Implement as a tax on total (labor plus asset) income less saving
- Consumption depends on \(\alpha \) but not on \(\varepsilon \)
- Can redistribute wrt. uninsurable shocks without distorting the efficient response of hours to insurable shocks
- Higher progressivity and higher welfare

Heathcote-Storesletten-Violante, "Redistributive Taxation in a Partial Insurance Economy"
Alternative assumptions on G

1. G endogenous and valued: $\chi = 0.25$, $G^* = \chi/(1 + \chi) = 0.2$
Alternative assumptions on G

1. G endogenous and valued: \(\chi = 0.25, \ G^* = \chi/(1 + \chi) = 0.2 \)

2. G endogenous but non valued: \(\chi = 0, \ G^* = 0 \)

3. G exogenous and proportional to \(Y \): \(G/Y = \bar{g} = 0.2 \)

4. G exogenous and fixed in level: \(G = \bar{G} = 0.2 \times Y^{US} \)
Alternative assumptions on G

1. G endogenous and valued: $\chi = 0.25$, $G^* = \frac{\chi}{1 + \chi} = 0.2$

2. G endogenous but non valued: $\chi = 0$, $G^* = 0$

3. G exogenous and proportional to Y: $G/Y = \bar{g} = 0.2$

4. G exogenous and fixed in level: $G = \bar{G} = 0.2 \times Y^{US}$

<table>
<thead>
<tr>
<th></th>
<th>G endogenous</th>
<th>$\chi = 0.25$</th>
<th>0.200</th>
<th>0.087</th>
<th>-0.012</th>
</tr>
</thead>
<tbody>
<tr>
<td>G endogenous</td>
<td>$\chi = 0$</td>
<td>0.000</td>
<td>0.209</td>
<td>0.103</td>
<td></td>
</tr>
<tr>
<td>g exogenous</td>
<td>$\bar{g} = 0.2$</td>
<td>0.200</td>
<td>0.209</td>
<td>0.103</td>
<td></td>
</tr>
<tr>
<td>G exogenous</td>
<td>$\bar{G} = 0.2 \times Y^{US}$</td>
<td>0.188</td>
<td>0.095</td>
<td>0.002</td>
<td></td>
</tr>
</tbody>
</table>

Heathcote-Storesletten-Violante, “Redistributive Taxation in a Partial Insurance Economy”
Going forward

• Part of G wasted

• Median voter choosing (g, τ) once and for all

• Skill-biased technical change

• Comparison with Mirlees solution

• Rent-extraction by top earners? (Piketty-Saez view)

• Endogenous growth?
Going forward

- Part of G wasted

- Median voter choosing (g, τ) once and for all

- Skill-biased technical change

- Comparison with Mirlees solution

- Rent-extraction by top earners? (Piketty-Saez view)

- Endogenous growth?